FLUIDODINÂMICA COMPUTACIONAL APLICADA NA CALIBRAÇÃO DA PERMEABILIDADE DE UM *WETLAND* FLUTUANTE DE TRATAMENTO

<u>Taís Natsumi Yamasaki</u>¹ Johannes Gérson Janzen²

Recursos Hídricos e Qualidade da Água

Resumo

Wetlands flutuantes de tratamento (FTWs) são uma alternativa ao tratamento de água, seja em rios ou lagoas. Os FTWs são constituídos por plataformas flutuantes colocadas na superfície d'água, sobre as quais a vegetação cresce de forma hidropônica, isto é, com as raízes sempre submersas. Os FTWs atuam na melhora da qualidade da água através das raízes e do biofilme que se forma aderido a elas, que juntos absorvem nutrientes e retêm contaminantes e partículas suspensas. O objetivo do estudo foi calibrar a permeabilidade de um FTW utilizando a Fluidodinâmica Computacional (CFD), com base em experimentos em escala de laboratório. O FTW foi numericamente representado como meio poroso, no qual um termo sumidouro foi adicionado nas equações de quantidade de movimento da simulação. A calibração da permeabilidade foi obtida comparando-se, entre a simulação e os experimentos, o perfil da velocidade longitudinal no eixo de simetria do FTW. Valores de permeabilidade foram variados entre 10⁻⁶ a 10⁻⁸ m². O melhor ajuste se deu para a permeabilidade de 10⁻⁶ m².

Palavras-chave: Wetlands flutuantes de tratamento, permeabilidade, meio poroso, CFD.

¹ Me. e aluna de Doutorado em Tecnologias Ambientais. Universidade Federal de Mato Grosso do Sul, Faculdade de Engenharias, Arquitetura e Urbanismo e Geografia, taisnatsumi@gmail.com.

² Prof. Dr. Universidade Federal de Mato Grosso do Sul, Faculdade de Engenharias, Arquitetura e Urbanismo e Geografia, johannesjanzen@gmail.com.

Introdução

Nas últimas duas décadas, os *wetlands* flutuantes de tratamento (FTWs) têm se tornado uma tecnologia de crescente interesse no tratamento de rios, canais e lagoas (LUCKE *et* al., 2019). Os FTWs são similares aos *wetlands* construídos convencionais no que tange ao uso de plantas para a remoção de nutrientes e contaminantes. A diferença é que, nos FTWs, as raízes das plantas permanecem em contato direto com a coluna d'água, crescendo de forma hidropônica, ao invés de se fixar em um substrato (HEADLEY & TANNER, 2012). Isso é possível com o uso de plantas flutuantes, que são colocadas na superfície d'água, e sobre quais as plantas são inseridas.

O tratamento proporcionado pelos FTWs é realizado pelas raízes das plantas e pelo biofilme, este último constituído por algas, bactérias e outros microrganismos que crescem aderidos à raízes (LUCKE *et* al., 2019). Através de processos bioquímicos e físicos, os FTWs conseguem remover nutrientes, metais e matéria orgânica dissolvida, reter sólidos suspensos e diminuir a turbidez da água (HEADLEY & TANNER, 2012). Estudos laboratoriais também têm indicado o potencial dos FTWs na remoção de pesticidas, herbicidas e produtos farmacêuticos (BI *et* al., 2019).

Um aspecto importante que precisa ser considerado em estudos de FTWs são as interações hidrodinâmicas entre as raízes e o escoamento. O tempo de contato e o fluxo de massa do escoamento entrando nos FTWs são essenciais para a eficiência do tratamento. Por isso, o presente trabalho objetivou, como primeiro passo no estudo hidrodinâmico de um FTW, calibrar numericamente a permeabilidade de um FTW a partir de dados experimentais de Liu *et* al. (2019), utilizando para isso a Fluidodinâmica Computacional (CFD).

Metodologia

A geometria do modelo consistiu em um FTW retangular, colocado na parede de um canal (Figura 1a). O FTW apresentou comprimento L = 25.6 cm, largura W = 18 cm e profundidade h = 10.5 cm, e foi colocado 300 cm a jusante da entrada do canal. O canal possuiu comprimento $L_c = 1600$ cm, largura $W_c = 120$ cm e profundidade H = 23 cm. A

geometria foi baseada nos experimentos de laboratório de Liu *et* al. (2019), que construíram FTWs a partir de arranjos de *Eichhornia crassipes*.

A geometria foi dividida em elementos hexaédricos de volume finito, nos quais as equações governantes de conservação de massa e de quantidade de movimento foram calculadas. Isso resultou em uma malha composta por 77 mil elementos, cada um medindo 4 cm de lado (Figura 1b). O CFD utiliza a discretização da geometria para conseguir resolver as equações de *Navier-Stokes* através de métodos numéricos.

Figura 1 – (a) Domínio computacional, com o FTW em verde. O escoamento chega à entrada do canal com velocidade U₀. (b) Malha resultante da discretização do domínio. Para fins de melhor visualização, o canal inteiro não está sendo mostrado.

A zona de raízes do FTW foi representada por um meio poroso, através do método de *Darcy*. Xavier *et* al. (2018) mostraram que o meio poroso é capaz de capturar os efeitos da resistência que as raízes exercem sobre o escoamento. Para isso, um termo sumidouro é adicionado na equação da quantidade de movimento. A permeabilidade do meio poroso foi calibrada com base nos dados de Liu *et* al. (2019), variando-se entre 10^{-6} a 10^{-8} m².

A simulação foi realizada em regime permanente, com velocidade inicial $U_0 = 9.8$ cm/s na entrada do canal, similar a Liu *et* al. (2019). A profundidade do escoamento foi de 23 cm. A saída do canal foi definida como *outlet*, com pressão igual a zero. As paredes e o fundo do canal foram tratados como paredes não-deslizantes. O topo do canal foi definido como simetria. O modelo de turbulência utilizado foi o *Shear Stress Transport*. A simulação foi realizada no *solver Fluent*, versão 19R3.

Os perfis de velocidade u (na direção x), normalizados pela velocidade inicial U_0 , foram plotados na Figura 2. Os perfis foram obtidos no eixo de simetria longitudinal do FTW, isto é, passando a meia largura do FTW (y = 9 cm), e a meia profundidade do FTW.

Figura 2 – perfis da velocidade u/U_0 ao longo do eixo de simetria longitudinal do FTW, para diferentes permeabilidades. O FTW está localizado entre x/L = 0 e 1.

De modo geral, o escoamento apresentou uma grande redução na velocidade ao entrar em contato com o FTW (x/L = 0). Isso se deveu à resistência das raízes, que desacelerou o escoamento na direção longitudinal (eixo x). A redução persistiu até a uma distância de x/L = 2 no experimento (círculos azuis), quando o escoamento passou a retornar progressivamente aos valores iniciais de velocidade (x/L > 2).

A curva da permeabilidade de 10^{-8} m² (em verde) apresentou uma redução mais acentuada antes de atingir o FTW (x/L = -2 a 0), e permaneceu com velocidade nula em todo o FTW (x/L = 0 a 1). A jusante (x/L > 1), a velocidade se recuperou antes dos próprios dados experimentais para valores próximos a $u/U_0 = 0.8$.

A curva da permeabilidade de 10^{-7} m² (em roxo) apresentou um outro comportamento. A montante do FTW (x/L = -2 a 0), a redução na velocidade ficou similar ao da permeabilidade de 10^{-8} m², chegando a zero logo no início do FTW. Dentro do FTW, (x/L = 0 a 1), a curva não acompanhou os dados de Liu *et* al. (2019). A recuperação da velocidade se iniciou em aproximadamente x/L = 1.5 e se deu de forma mais suave, conseguindo acompanhar os dados experimentais a partir de x/L > 4.

Por fim, a curva da permeabilidade de 10^{-6} m² (em laranja) resultou em um perfil mais ajustado ao experimento, especialmente dentro do FTW. A curva conseguiu acompanhar os dados em toda a região imediatamente a montante do FTW (x/L = -2 a 0), dentro do FTW (x/L = 0 e 1) e imediatamente a jusante do FTW (x/L = 1 a 3), conforme mostrado na Figura 2. Durante a recuperação da velocidade, a curva ficou abaixo dos dados experimentais (x/L > 4), até alcançá-los em x/L = 15. Dentre os valores testados, o FTW ficou melhor calibrado com a permeabilidade de 10^{-6} m².

Conclusões

A simulação CFD conseguiu representar o comportamento hidrodinâmico de um FTW em um canal. As raízes do FTW foram representadas por um meio poroso, cuja permeabilidade foi calibrada com base em dados experimentais. A permeabilidade que resultou no melhor ajuste da simulação foi a de 10^{-6} m².

AGRADECIMENTOS

Taís N. Yamasaki agradece à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela bolsa de doutorado, na modalidade Demanda Social.

Referências

BI, R. et al. Giving waterbodies the treatment they need: A critical review of the application of constructed floating wetlands. **Journal of Environmental Management**, v. 238, p. 484-498, 2019.

HEADLEY, T.R.; TANNER, C.C. Constructed Wetlands With Floating Emergent Macrophytes: An Innovative Stormwater Treatment Technology. **Critical Reviews in Environmental Science and Technology**, v. 42, p. 2261-2310, 2012.

LIU, C. et al. Floating treatment islands in series along a channel: The impact of island spacing on the velocity field and estimated mass removal. Advances in Water Resources, v. 129, p. 222-231, 2019.

LUCKE, T. et al. Experimental designs of field-based constructed floating wetland studies: A review. **Science of the Total Environment**, v. 660, p. 199-208, 2019.

XAVIER, M.L.M. et al. Numerical modeling study to compare the nutrient removal potential of different floating treatment island configurations in a stormwater pond. **Ecological Engineering**, v. 111, p. 78-84, 2018.